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Receptivity of a high-speed boundary layer on a flat plate to acoustic disturbances is
investigated using a combined numerical and asymptotic approach. The leading-edge
receptivity problem is discussed with emphasis on physical mechanisms associated
with scattering and diffraction of acoustic waves. Analytical solutions provide insight
into the interplay of these mechanisms as a function of the angle of incidence of
external acoustic waves. The theoretical predictions are in good agreement with
the wind-tunnel experimental data of Maslov et al. obtained at free-stream Mach
number 6. The leading-edge receptivity model is incorporated into the multiple-
modes method to account for the inter-modal exchange downstream from the leading
edge. This combined modelling resembles basic features of the direct numerical
simulation of Ma & Zhong. A comparative analysis of the leading-edge receptivity
and the inter-modal exchange associated with non-parallel effects is presented. The
theory allows fast evaluation of the receptivity coefficients and clarifies the physics
of the receptivity process. The theoretical results may guide further direct numerical
simulations and experimental studies of boundary layer receptivity at supersonic and
hypersonic speeds.

1. Introduction
The receptivity problem is associated with excitation of the boundary-layer modes

by free-stream disturbances (acoustic, vortical and thermal perturbations) and by wall-
induced disturbances (vibrations, periodic suction/blowing and surface heating), see
Morkovin (1969), Reshotko (1976). Solutions of this problem provide initial conditions
for the initial boundary-value problem describing the downstream evolution of
unstable disturbances. Incorporating results of receptivity studies into the transition
prediction methodology is desirable in order to couple the transition locus with
characteristics of free-stream disturbances and avoid the empiricism of the eN -method
(Malik, Zang & Bushnell 1990).

For subsonic boundary layers, when the phase speeds of free-stream disturbances
and Tollmien–Schlichting (TS) waves are significantly different, the main objective of
receptivity studies is to identify a scale-conversion mechanism tuning the time and/or
length scales of external disturbances. Theoretical analyses of Goldstein (1983, 1985),
Ruban (1984), Zhigulev & Fedorov (1987) and the later studies of Choudhari &
Streett (1990) and Choudhari (1994, 1996) showed that acoustic waves may effectively
generate TS waves if the forcing length scale is of the order of the TS wavelength.
This can be achieved in non-parallel flows near the leading edge, in the vicinity of
a surface imperfection, or over a wavy wall or hump. Choudhari & Streett (1990)



102 A. V. Fedorov

suggested a different mechanism associated with the bilinear interaction between a
pair of free-stream disturbances. Wu (1999) elaborated this mechanism by considering
suitable convecting gusts, which interact with sound waves to produce a forcing that
has the same time and length scales as those of TS waves in the vicinity of the
neutral point. In this case, the scale conversion is achieved without resorting to a
local non-homogeneity of the mean flow.

The stability experiments of Kendall (1975) showed that the evolution of
disturbances in the supersonic boundary layer on a flat plate at Mach numbers
3, 4.5 and 5.6 is essentially different from the case of subsonic flows. Kendall reported
that “fluctuations of all frequencies were observed to grow monotonically larger in
the region of a boundary layer extending from the flat plate leading edge to the
predicted location of instability; i.e. in a region where no growth was expected”.
Similar observations were reported by Stetson et al. (1991) for a planar boundary
layer at Mach 8 and by Graziosi & Brown (2002) for the boundary layer on a flat
plate at Mach 3. Mack (1975) developed a forcing theory, which was successfully
applied to the Mach 4.5 data of Kendall (1975). However, Mack noted that “the
major difficulty in the use of the forcing theory is that forced disturbances are distinct
from free disturbances, and the process by which the former becomes the latter is
unknown”.

These findings motivated further theoretical studies of the disturbance field in
the leading-edge region. Fedorov & Khokhlov (1991, 1993, 2001) showed that the
disturbance spectrum reveals new features in boundary layers at supersonic and,
especially, hypersonic speeds when the second mode becomes the dominant instability.
These features are illustrated in figure 1 where the phase speeds of two-dimensional
disturbances are shown as a function of the Reynolds number R =

√
U ∗

∞x∗/ν∗
∞ (where

U ∗
∞ is the free-stream velocity, x∗ the distance from the leading edge and ν∗ the

kinematic viscosity) for the boundary layer on a flat plate at the free-stream Mach
number M = 4.5, the wall temperature ratio Tw/Tad = 1 and the frequency parameter
F =5 × 10−5. In the leading-edge region 1, the boundary-layer modes are synchronized
with acoustic waves. Namely, the wavenumber of one mode (Mode S in figure 1) tends
to the wavenumber of slow acoustic wave with the phase speed c = 1 − 1/M , whereas
the wavenumber of another mode (Mode F in figure 1) tends to that of fast acoustic
wave with c = 1 + 1/M . This leads to significant changes of the disturbance field
structure in the leading-edge vicinity. Early studies by Gaponov (1983, 1985) led
to similar conclusions. In Region 2, Mode F is synchronized with the external
entropy/vorticity waves of phase speed c = 1. The disturbance dynamics associated
with this synchronization was analysed by Fedorov & Tumin (2001). Near the lower
neutral branch of Mode S (Region 3), Mode F is synchronized with Mode S that
leads to discrete spectrum branching. Fedorov & Khokhlov (2002) showed that in this
region the boundary layer is extremely receptive to wall-induced disturbances such as
vibrations and periodic suction–blowing.

Because the time and length scales of synchronized disturbances are close to
each other, a strong interaction occurs between them without resorting to the scale-
convergence mechanism. Moreover, the difference between the phase speeds of the
boundary-layer modes and those of acoustic waves is relatively small in a wide region
(from the leading edge to the upper neutral branch). This difference decreases with
the Mach number, which may enhance the distributed inter-modal exchange.

Using asymptotic methods Fedorov & Khokhlov (1991, 1993) developed a
theoretical model that predicted the leading-edge receptivity coefficients in a compact
analytical form. This model provides insight into the physics of local receptivity
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Figure 1. Phase speed of two-dimensional disturbances as a function of Reynolds number
R =

√
U ∗

∞x∗/ν∗
∞; M = 4.5, Tw/Tad = 1, F = 5 × 10−5.

associated with diffraction and scattering of acoustic waves near a sharp leading
edge. Further downstream, the mean-flow non-parallel effect leads to distributed
receptivity due to the inter-modal exchange on a relatively large length scale. This
mechanism couples amplitudes of different modes via longitudinal variations of the
mean flow. The inter-modal exchange can be modelled using the multiple-modes
method discussed by Zhigulev & Tumin (1987) and Fedorov & Khokhlov (2001).
A combination of the two methods allows modelling of disturbance dynamics in
both the leading-edge and downstream regions. This also helps a comparison of the
inter-modal exchange with the leading-edge receptivity.

Recently Maslov et al. (2001) performed wind-tunnel experiments on receptivity of
the boundary layer to two-dimensional and three-dimensional acoustic disturbances
interacting with a sharp leading edge of a flat plate at the free-stream Mach number
M∞ = 5.92. These data provide an opportunity to verify the theoretical model of
Fedorov & Khokhlov (1991, 1993). The direct numerical simulation (DNS) of Ma &
Zhong (2001) gives another opportunity to compare theoretical predictions with the
numerical experiment on receptivity to two-dimensional acoustic waves at M∞ = 4.5.
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Figure 2. Physical picture of the disturbance field.

This has motivated us to revise the theory of Fedorov & Khokhlov (1991, 1993),
incorporate its results into the multiple-modes method accounting for an inter-modal
exchange and verify the theoretical predictions by comparison with the experimental
data and DNS.

In § 2, we briefly outline the theoretical model of leading-edge receptivity to acoustic
disturbances interacting with a sharp flat plate at supersonic speeds. The discussion
is focused on physical aspects of the problem and comparisons with the experiment
of Maslov et al. (2001). Interested readers are referred to Fedorov & Khokhlov
(1991, 1993) for mathematical details. In § 3, we consider an exchange between the
boundary-layer modes due to non-parallel effects and compare the results with the
DNS of Ma & Zhong (2001). We also discuss a relationship between the leading-
edge receptivity and the inter-modal exchange. In § 4, we conclude the paper with a
summary discussion.

2. Leading-edge receptivity
2.1. Asymptotic structure of the disturbance field

Consider the supersonic flow over a semi-infinite flat plate radiated by acoustic
waves of angular frequency ω∗ as schematically shown in figure 2. The flow density,
temperature and velocity components (u, v, w) are referenced to their free-stream
values ρ∗

∞, T ∗
∞ and U ∗

∞, where an asterisk denotes a dimensional quantity. The

quantities ω∗−1

, Λ∗ =U ∗
∞/ω∗ and ρ∗

∞U ∗2
∞ are used as reference time, length and pressure,

respectively. Since the disturbance phase speed is ∼ U ∗
∞, the length scale Λ∗ is of

the order of the disturbance wavelength. The non-dimensional frequency parameter
F = ν∗

∞ω∗/U ∗2
∞ is assumed to be small (F ∼ 10−5–10−4 for unstable disturbances). It is

also assumed that the disturbance amplitude is small enough for the linear theory to
be applicable.

In uniform flow (outside the boundary layer), pressure fluctuations are governed by
the linear acoustic equation, which has the elementary wave solution with wave-vector
components (α, γ, β)

p = exp(iαx + iγy + iβz − it), (2.2)

γ =
√

(M2 − 1)(α − α1)(α − α2), α1,2 =
M2 ±

√
M2 + β2(M2 − 1)

M2 − 1
, (2.3)

where M > 1 is free-stream Mach number. For β real and fixed, the branch points
α1,2 of the function γ (α) correspond to slow and fast acoustic waves with the wave
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Figure 3. Asymptotic structure of the disturbance field.

front being perpendicular to the plate surface. In this case, the angle of incidence
θy = tan−1(γ /α) = 0, the sweep angle θz = tan−1(β/α), and the vertical wavenumber
γ (α1,2) = 0. The wavenumbers α1,2 and the correspondent phase speeds c1,2 = 1/α1,2

can be written in terms of θz as

α1,2 =
M cos θz

M cos θz ∓ 1
, c1,2 = 1 ∓ 1

M cos θz

. (2.4)

The wavenumber ranges α > α1 and α < α2 are related to slow and fast acoustic
waves with the angles of incidence θy �= 0. For θy > 0 (the waves are incident on
the plate from above) the branch of γ (α) is chosen as arg(γ (α >α1)) = 0 and for
θy < 0 (the waves are incident on the plate from below) arg(γ (α > α1)) = − π. The
wavenumbers are expressed in terms of the wave-front angles as

α =
M cos θy cos θz

M cos θy cos θz ± 1
, (2.5)

where plus (minus) corresponds to fast (slow) acoustic waves.
The presence of a thin plate leads to reflection of the incident wave, diffraction

of the disturbance due to the boundary layer growth, and scattering of the incident
wave by the leading edge. For θy = 0 diffraction is the dominant mechanism since the
leading-edge scattering is negligible. For θy < 0 both scattering and diffraction affect
the disturbance field. For θy > 0 incident and reflected acoustic waves are involved in
the receptivity process.

First, we consider acoustic waves with the wavenumbers α =α1,2 when θy = 0. In
the inviscid limit, when the boundary layer is negligibly thin, the pressure disturbance
is given by (2.2) with γ = 0. For finite but small viscosity, the boundary layer on the
plate surface disturbs the acoustic field. Fedorov & Khokhlov (1991, 1993) showed
that an asymptotic structure of this disturbance is governed by the small parameter
ε = 
1/2F 1/4, where 
 is related to the boundary-layer displacement thickness as
δ∗ = 


√
ν∗

∞x∗/U ∗
∞. The coefficient 
 is a function of M and the wall temperature Tw .

It is included in the asymptotic scaling in order to account for the strong dependence of
the boundary-layer characteristics on these parameters. The disturbance-field scaling
is given by the relations

x = (x1, ε
−2x2, ε

−4x3), y = (εy1, ε
−1y2, y3). (2.6)

The asymptotic structure (2.6) is schematically shown in figure 3 (see also Fedorov &
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Khokhlov 1991). It includes: the scattering region (0) with (x, y) = O(1); the near-field
boundary layer (1) with (x2, y1) = O(1); the diffraction layer (2) with (x2, y2) =O(1);
the far-field boundary layer (3) with (x3, y3) =O(1), which contains the lower and
upper neutral branches of the unstable boundary-layer mode. The Stokes layer of the
thickness O(ε2) is not depicted, since it has no influence on the disturbance field in
the dominant approximation considered hereafter. The scaling (2.6) holds for slightly
inclined acoustic waves with α − α1,2 = O(ε2) because additional distortions, which
are due to the phase dependence on y, can be treated as slow variations of the
disturbance amplitude. Moreover, (2.6) holds for a blunted plate only if the leading-
edge radius r∗ is small compared with the boundary-layer thickness in the diffraction
layer: r∗/Λ∗ � ε.

For disturbances of relatively high frequency, the wavelength may be of the order
of the distance to the neutral branch, i.e. the parameter ε may be not very small. This
case is exemplified by the stability experiments of Graziosi & Brown (2002) performed
at relatively low unit Reynolds numbers. The first-order asymptotic theory discussed
hereafter may fail to predict the receptivity coefficients in this range of parameters.
However, the theoretical model may still be useful for capturing qualitative trends
and providing insight into physical mechanisms of the receptivity process.

2.2. Solution in the diffraction layer

Under the assumptions of § 2.1 the disturbance wavelength is short relative to the
diffraction-layer thickness and long relative to the boundary-layer thickness. In
addition, the longitudinal length of the diffraction layer is much larger than the
disturbance wavelength, while it is much smaller than the distance to the neutral
branch. These properties allowed Fedorov & Khokhlov (1991, 1993) to obtain
analytical solutions in the near-field region x2 = O(1). They considered slightly oblique
acoustic waves with wavenumbers

α = α1,2 ± ε2q2, q = O(1), (2.7)

where q > 0 if the wave radiates the plate from above (θy > 0), and q < 0 if the wave
is incident on the plate from below (θy < 0). In the dominant-order approximation,
the pressure amplitude is constant across the boundary layer. Its dependence on the
longitudinal coordinate x2 is governed by the integral equation

p1(x2) − λ

x2∫
0

√
ξ

x2 − ξ
p1(ξ ) dξ = exp(±iq2x2) +

√
±i/π q

x2∫
0

exp(±iq2ξ )√
x2 − ξ

dξ, (2.8)

λ = − (α1,2 − 1)2k√
2πi[M2(α1,2 − 1) − α1,2]

. (2.9)

Here k is the integral parameter, which depends on the mean velocity U and
temperature T as

k =

∞∫
0

[
T

(
α2

1,2 + β2
)

(α1,2U − 1)2
− M2

]
dη,

where η = y1/
√

x2 is the boundary-layer variable. For q = 0 (θy = 0), the solution of
(2.8) is expressed in the series form

p1 =

∞∑
n=0

anπn/2(λx2)
n, a0 = 1, an =

n∏
j=1

�(j + 1/2)

�(j + 1)
, (2.10)
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where � is the gamma function. The downstream asymptotic expansion of (2.10) is

p1 = E0

(
πλ2x2

2

)1/8
exp

(
πλ2x2

2

/
2
)

− (πλx2)
−1 + . . . , x2 → ∞,

E0 = (8π)1/4A, A = lim
n→∞

[
n−1/8an

√
�(n + 3/2)

]
= 0.935 . . . .


 (2.11)

The first (exponential) term is a ‘seed’ for the boundary-layer modes. Since the
parameter λ is essentially complex, this term has an oscillatory behaviour indicating
that the incident acoustic wave evolves into another wave with the phase speed
departing from its original value. Such a behaviour indicates that a portion of the
acoustic disturbance is transferred to a boundary-layer mode.

The second term in (2.11) is associated with the acoustic disturbance decaying as
x−1

2 , i.e. the boundary layer displaces the acoustic field and forms a quiescent layer
over the plate surface. This result is consistent with the DNS depicted in figure 15 of
Ma & Zhong (2001). At first glance, this contradicts the experimental data of Kendall
(1975) indicating a monotonic growth of a wide range of frequencies from the leading
edge to the upstream neutral branch. However, such a growth is observed for the
maximum of mass-flow fluctuations in the boundary layer radiated by acoustic waves
of non-zero angles θy . The behaviour of this maximum is quite different from that of
the wall pressure disturbance induced by acoustic waves of θy = 0.

Fedorov & Khokhlov (1993) showed that in the case of q �= 0 the asymptotic
solution also includes the exponential term with the constant E0 being replaced by
the function

E(q) = E0

[
ϕ(r) +

√
±i/(πλ) qψ(r)π1/4

/
A2

]
, (2.12)

ϕ(r) =

∞∑
n=0

πn/2rn

ann!
, ψ(r) =

∞∑
n=0

πn/2anr
n, r = ±iq2/(πλ). (2.13)

The relation (2.12) determines the boundary-layer response to acoustic waves of
small angles of incidence θy = O(ε).

2.3. Boundary-layer modes

Disturbances in the far-field boundary layer (x3, y3) = O(1) (Region 3 in figure 3)
were analysed by Fedorov & Khokhlov (1991, 1993) using the WKB method, which
was applied by Gaster (1974) to incompressible boundary layers and extended to
compressible flows by Nayfeh (1980) and Zhigulev & Tumin (1987). Since Λ∗ = U ∗

∞/ω∗

has been taken as a characteristic length scale, the Reynolds number is determined as
RΛ = U ∗2

∞ /(ω∗ν∗
∞) = F −1. A three-dimensional disturbance is represented by the vector

function

Z =

(
u,

∂u

∂y
, v, p, ϑ,

∂ϑ

∂y
, w,

∂w

∂y

)T

, (2.14)

Z =
[
Z0(x3, y) + ε4 Z1(x3, y) + . . .

]
exp(iS̃), (2.15)

S̃ = ε−4

x3∫
0

α̃(x3) dx3 + βz − t,

where ϑ is the temperature fluctuation; y = y3 according to (2.6). The amplitude
function Z0 and the eigenvalue α̃ are solutions of the standard boundary-value
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problem for a locally parallel boundary layer

∂ Z0

∂y
= H0 Z0,

Z01 = Z03 = Z05 = Z07 = 0, y = 0, (2.16)

|Z0| → 0, y → ∞.

Here H0 is 8 × 8 matrix, which depends on the mean-flow profiles U (x3, y) and
T (x3, y), disturbance parameters α̃, β and the Reynolds number RΛ. Non-zero
elements of H0 are given in the Appendix of Fedorov & Khokhlov (2002). At
the next-order approximation, the problem is formulated as(

∂

∂y
− H0

)
Z1 = −i

∂H0

∂α̃

∂ Z0

∂x3

+ H1 Z0,

Z11 = Z13 = Z15 = Z17 = 0, y = 0, (2.17)

|Z1| → 0, y → ∞,

The right-hand side of (2.17) is associated with non-parallel effects. Its explicit form
coincides with that given in the Appendix of Fedorov & Khokhlov (2002) with the
replacements: Fk0 → Z0, x1 → x3, R → RΛ and α → α̃.

A solution of the homogeneous problem (2.16) is expressed as

Z0 = C(x3)ζ (x3, y, α̃), (2.18)

where ζ is the eigenvector normalized by the condition ζ4(x3, 0, α̃) = 1 (the wall
pressure amplitude =C(x3)). The inhomogeneous problem (2.17) has a non-trivial
solution if its right-hand side is orthogonal to the eigenvector ξ (x3, y, α̃) of the
adjoint problem. This leads to the ordinary differential equation for the coefficient
C(x3)

dC

dx3

= WC, (2.19)

W (x3) = −

〈
B

∂ζ

∂x3

, ξ

〉
+ 〈H1ζ , ξ〉

〈Bζ , ξ〉 , 〈ζ , ξ〉 ≡
∞∫

0

8∑
j=1

ζj ξ̄j dy,

where B = −i∂H0/∂α̃, the overbar denotes a complex conjugate value. Equation
(2.19) is supplemented with the initial condition resulted from matching of the inner
expansion (x3 → 0) of the outer solution (2.18) with the outer expansion (2.11) (x2 →
+∞) of the inner solution (2.10). Performing this matching Fedorov & Khokhlov
(1991, 1993) showed that there are two boundary-layer modes synchronized with the
slow and fast acoustic waves near the leading edge (x3 → 0). Their eigenvalues are

α̃ = α1,2 − k2(α1,2 − 1)4

2[M2(α1,2 − 1) − α1,2]
x3 + . . . , x3 → 0. (2.20)

Hereafter, the disturbance with α̃ → α1 is called ‘Mode S’ (slow mode) and that
with α̃ → α2 ‘Mode F’ (fast mode). Near the leading edge, the pressure disturbance
of these modes is expressed as

p = C0x
1/4
3 exp(iS̃), x3 → 0, (2.21)

C0 = ε−1/2(πλ2)1/8E(q), (2.22)
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Case M T0 (K) Tw/Tad 


1 4.5 329 1 10.391
2 5.92 390 1 16.896
3 5.5 567.7 0.1 4.442

Table 1. The cases considered.

where λ and E(q) are given by (2.9) and (2.12), respectively. In a similar way, the
boundary-layer disturbance vector is

Z = C0x
1/4
3 ζ (x3, y) exp(iS̃), x3 → 0. (2.23)

The relation (2.23) couples Modes S and F with an incident acoustic wave that
solves the leading-edge receptivity problem for the case of small angles of incidence.
Following the terminology of Goldstein (1983) we call C0 the ‘coupling coefficient’.
Note that this coefficient does not depend on the longitudinal coordinate x3.

It remains to be seen whether Modes S and F are relevant to unstable disturbances.
This can be verified by integrating numerically the eigenvalue problem (2.16).
Calculations are performed for air, which is treated as a perfect gas with Prandtl
number 0.72 and specific heat ratio 1.4. The viscosity µ is approximated by the
Sutherland formula; the second viscosity is µv =0.8µ. The system of equations (2.16)
is integrated from the boundary-layer edge to the wall using the fourth-order Runge–
Kutta method with Gram–Schmidt orthonormalization to control the parasitic error
growth. A Newton–Raphson procedure is used for the eigenvalue search. The
integration domain contains 428 knots across the boundary layer which allows
calculations of eigenvalues and eigenfunctions with the relative error less than 10−5.

Hereafter we consider the cases listed in table 1: case 1 corresponds to the DNS
of Ma & Zhong (2001); case 2 is relevant to the experiment of Maslov et al. (2001);
case 3 exemplifies the boundary layer on a cooled plate. Figure 4(a, b) shows the
eigenvalues of Modes S and F (solid lines) and their asymptotic approximations
(2.20) (dashed lines) for two-dimensional waves (β = 0) of frequency F = 5 × 10−5

for case 2. The Reynolds number R ≡
√

U ∗
∞x∗/ν∗

∞ = RΛ

√
x3/
 is also shown for

reference. Despite the relatively large value of ε = 0.304, the numerical solutions (solid
lines) of the full eigenvalue problem (2.16) are close to the asymptotic values (2.20)
(dashed lines) for small x3, especially for the real part of α̃ shown in figure 4(a).
The spatial growth rate, −Im(α̃), of Mode S has two maxima. The first maximum is
located at relatively small x3 and is associated with the first-mode instability according
to the terminology of Mack (1969, 1987). The second maximum is relevant to the
Mack second mode. Similar trends are observed for case 1. These cases are typical for
hypersonic boundary layers on a thermally insulated (adiabatic) wall. They illustrate
a situation when the unstable mode is synchronized with the slow acoustic wave near
the leading edge. Results for case 3 in figure 5(a, b) are topologically different from
those shown in figure (4a, b). Now, Mode F becomes unstable in the region x3 > 1.
This instability is again associated with the Mack second mode. Such a topology
occurs in hypersonic boundary layers on cooled surfaces. A detailed analysis of these
spectrum topologies and a criterion of switching from one topology to another are
presented by Fedorov & Khokhlov (2001).

The numerical examples shown in figures 4 and 5 indicate that the terminology
introduced by Mack (1969, 1987) to describe the multiplicity of inflectional neutral
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modes becomes ambiguous when applied to non-neutral solutions, i.e. a single relation
α̃(ω) can be relevant to multiple ‘higher-mode’ solutions. This motivates us to associate
the boundary-layer modes with their asymptotic behaviour near the leading edge and
introduce Modes S and F, which are different from the Mack first and second modes.

2.4. Scattering of acoustic waves at moderate angles of incidence

Before considering disturbances with angles of incidence θy = O(1), we discuss the
limit q → ∞ relevant to |θy |  ε. In this case, the right-hand side of (2.8) is expressed
as

exp(±iq2x2)[1 + q/|q|] − (±iπx2)
−1/2/q + . . . . (2.24)

Then, the function (2.12) can be decomposed into the two parts, E = E1 + E2,
corresponding to the first and second terms of (2.24). Their asymptotic behaviours
are

E1 = E0ϕ(r)[1 + q/|q|] = O(q−2), q → ∞, (2.25)

E2 = −E0π
1/4

√
±λ/(iπ) /(qA2), q → ∞. (2.26)
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Figure 5. Eigenvalues α ≡ α̃ for case 3; two-dimensional disturbances of F = 10−4;
ε = 0.211; solid lines, numerical solutions of (2.16), dashed lines, asymptotic relations (2.20).

These relations indicate that two receptivity mechanisms become distinguishable as
the angle of incidence increases:

(i) Mechanism (A) is associated with interaction of the incident and reflected waves
with the non-parallel boundary-layer flow; it is governed by the term E1.

(ii) Mechanism (B) is related to scattering of the incident wave by the leading edge;
it is governed by the term E2. The scattering induces a cylindrical acoustic source
at the leading edge x = 0. The secondary acoustic field from this source, in turn, is
synchronized with Modes S and F. The slow and fast acoustic waves generated by
the leading-edge source are diffracted in the region x2 =O(1). This diffraction leads
to excitation of Modes S and F similarly to the case of zero angle of incidence.

The relations (2.25)–(2.26) show that mechanism (B) becomes dominant as q → ∞.
This trend holds for relatively large angles of incidence θy relevant to significant
deviations of the acoustic wavenumber α from α1,2.

For the angle of incidence θy = O(1), Fedorov & Khokhlov (1991, 1993) showed that
the acoustic pressure in the scattering region (x, y) =O(1) (see figure 3) is expressed
as

p = p0(x, y) exp(iβz − it) + O(ε2), (2.27)
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where the amplitude p0 has the following asymptotic behaviour over the upper surface
of a flat plate

p0 = 2 exp(iαx) cos(γy) +

2∑
j=1

Gjx
−1/2 exp(iαjx)fj (y/

√
x) + . . . , (2.28)

G1,2 = ∓ iγ (α) exp(±iπ/4)(α1,2 − 1)√
π(α1 − α2)(M2 − 1) (α1,2 − α)(α − 1)

, (2.29)

fj (s) = exp{−is2[M2(αj − 1) − αj ]/2}, x → +∞, y = O(x). (2.30)

The first term of (2.28) represents incident and reflected acoustic waves in the upper
half-plane y > 0. If the external wave is incident on the plate from below, this term
must be omitted. The second part describes the secondary acoustic field from the
leading-edge cylindrical source. Near the wall, this field is seen as slow (α = α1)
and fast (α = α2) acoustic waves with their wave fronts perpendicular to the plate
surface and their amplitudes slow functions of y. According to (2.28) the asymptotic
expansions in the diffraction region x2 = O(1) are

p = exp(iS)
[
2 cos(γy) + εp

(1)
0 (x2, y) + O(ε2)

]
+ ε

[
exp(iα1x +iβz − it)p(1)

1 (x2, y2)

+ exp(iα2x + iβz − it)p(1)
2 (x2, y2)

]
+ . . . . (2.31)

The term p
(1)
0 represents a small distortion of the reflected wave and contains no

‘seed’ for the boundary-layer modes. Its explicit form is p
(1)
0 = Const

√
x2 exp(−iγy).

At the bottom of the diffraction layer y2 = 0, the amplitudes p
(1)
1,2 are solutions of the

integral equation

p
(1)
j (x2) − λ

x2∫
0

√
ξ

x2 − ξ
p

(1)
j (ξ ) dξ = Gjx

−1/2
2 , j = 1, 2. (2.32)

This equation is similar to (2.8) derived for the case of small angles of incidence. The
downstream asymptotic expression for p

(1)
j contains an exponential term coinciding

with the first term of (2.11) if the constant E0 is replaced by the function

E(α) = E0G1,2π1/4λ1/2/A2. (2.33)

Mechanism (B) prevails over mechanism (A) for acoustic waves of θy = O(1). In this
case the phase speeds of acoustic waves are significantly different from those of the
boundary-layer modes. Such a detuning of the synchronization conditions weakens
mechanism (A). On the other hand, the secondary acoustic field induced through
mechanism (B) is always synchronized with Modes S and F. This feature may be
examined by comparison of the boundary-layer responses to acoustic waves incident
on the plate from above (figure 6a) and below (figure 6b). For the configuration shown
in figure 6(b), mechanism (A) is not involved in the receptivity on the upper surface of
the plate, since this surface is shielded from the incident wave. For the configuration
shown in figure 6(a), both (A) and (B) contribute to the boundary-layer disturbance.
Since the contributions from mechanism (B) are identical in both cases due to
symmetry of scattering, the difference between the two signals measured at a certain
point on the upper surface of plate characterizes effectiveness of mechanism (A).

Unfortunately, it is difficult to realize this situation experimentally because a real
acoustic source generates entropy and vortical disturbances. If the source is above the
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Acoustic field from the leading-edge source
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Boundary layer

(b)
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Boundary layerFree stream

Figure 6. Schematics of boundary layer responses to acoustic waves incident on the plate
from above (a) and below (b).

plate, the non-acoustic disturbances also contribute to the boundary-layer disturbance.
Nevertheless, these disturbances can be filtered out by using wave trains instead of
harmonic disturbances. Since the group velocities of the acoustic mode are essentially
different from those of the entropy and vorticity modes, the external disturbances
and corresponding responses of the boundary layer will be observed in different
time intervals. Mechanisms (A) and (B) can also be examined by direct numerical
simulations of the flow configurations shown in figure 6(a, b).

2.5. Coupling coefficient

For small angles of incidence relevant to α → α1,2, the source intensities G1,2 given
by (2.29) are singular. Fedorov & Khokhlov (1993) resolved this singularity by
introducing the narrow regions α − α1,2 = O(ε2), where the inner solution is given by
(2.12). The inner limit, α → α1,2, of the function εE(α) (2.33) is matched with the
outer limit, q → ∞, of the function E(q) (2.12). Then, (2.33) can be combined with
(2.12) and expressed in the composite form

Ea(α) = E0[ε
−1P ψ(r) + ϕ(r)], (2.34)

P ≡ iπ1/4γ (α)(α1,2 − 1) exp(∓iπ/4)

λ1/2A2(α − 1)
√

π(M2 − 1)(α1 − α2)
, r = −i(α1,2 − α)ε−2(πλ)−1. (2.35)

Replacing E(q) by Ea(α) in (2.22) we obtain the coupling coefficient for slow
(α � α1) and fast (α � α2) acoustic waves of arbitrary angles of incidence:

C0 = ε−1/2(πλ2)1/8Ea(α). (2.36)
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Figure 7. Coupling coefficient |C0| vs. incident angle θy; case 1, two-dimensional

disturbances of F = 5 × 10−5; ε = 0.271.

Figures 7 and 8 illustrate parametric dependences of the coupling coefficient C0. In
figure 7(a, b) the modulus of C0(θy) is show for two-dimensional waves (θz = 0) for
case 1 (table 1); the frequency parameter F = 5 × 10−5 and ε = 0.271. By definition
Mode S (Mode F) is synchronized with the slow (fast) acoustic waves. Due to this
synchronization Mode S (Mode F) is effectively generated by the slow (fast) wave,
as shown in figure 7(a). Note that the coupling coefficients are not symmetric with
respect to the angle of incidence. The maximum of |C0(θy)| is observed at θy ≈ 20◦

for Mode S and θy ≈ 9◦ for Mode F, when both diffraction and scattering of the
incident wave transfer energy to the boundary-layer mode. The excitation of Mode
S (Mode F) via the fast (slow) wave is an order of magnitude weaker, as shown in
figure 7(b). In this case, the receptivity process involves mechanism (B) only. Since the
acoustic-wave scattering is antisymmetric with respect to θy , the coupling-coefficient
modulus is an even function. At the angle of incidence θy = 0, there is no scattering
and mechanism (B) gives C0 = 0 in the dominant-order approximation.

The coupling coefficient of Mode S is shown in figure 8(a, b) at various sweep angles
θz. For slow acoustic waves, |C0(θy)| monotonically increases with θz. For fast waves,
|C0(θy)| decreases with θz for θy < 84◦ and increases for θy > 84◦. This non-monotonic
behaviour is due to competition between the two trends: decreasing of the |C0(θy)|
maximum and widening of the θy range as θz increases. Similar trends are observed
in cases 2 and 3, which are not illustrated here.
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disturbances of F = 5 × 10−5; ε = 0.271.

2.6. Comparison with experiment

Maslov et al. (2001) performed experimental studies of the leading-edge receptivity
to acoustic waves induced by two-dimensional and three-dimensional actuators. The
experiments were conducted in a hypersonic blow-down wind tunnel at M = 5.92 and
the unit Reynolds number Re1 = U ∗

∞/ν∗
∞ = 13 × 106 m−1. The experimental setup

comprises a flat plate with an actuator and a test plate. Both plates have sharp leading
edges. A glow-discharge actuator generates acoustic waves of a fixed frequency, which
are incident on the leading edge of the test plate from below.

The α- and β-spectra of the longitudinal mass-flow disturbances were measured just
in front the leading edge of the test plate using a hot-wire anemometer. These data
provide the mass-flow amplitudes Qa(X = 0) of acoustic waves incident on the test
plate. Measurements of the boundary-layer disturbances Qbl on the test plate were
conducted at a fixed distance 
X from its leading edge. The hot wire was positioned
at the location of maximum mass-flow fluctuations across the boundary layer. The
receptivity coefficient was determined as

K(α, β, 
X) = Qbl(α, β)X=
X/Qa(α, β)X=0, (2.37)

where both α and β refer to wavenumbers of the incident acoustic wave. Using
the x-momentum equation and the energy equation for acoustic disturbances in
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Figure 9. Receptivity coefficient for case 2; M = 5.92, two-dimensional disturbances
of F = 3 × 10−5.

uniform compressible flow, we obtain the relationship between the mass-flow and
pressure amplitudes Qa = [M2 − 1/(1 − c)]p, where the phase speed is c = 1/α with α

given by (2.5). The mass-flow disturbance in the boundary layer is determined from
the eigenvector ζ (x3, y) of the corresponding boundary-layer mode at station x∗ =

X. It is expressed as q(x3, y) = [ζ1 + U (γM2ζ4 − ζ5/T )]/T , where the eigenvector
is normalized by the condition ζ4(x3, 0) = 1. Then the receptivity coefficient (2.37) is
written in the form

K =

∣∣∣∣ qm(x3)

[M2 − 1/(1 − c)]
C0x

1/4
3 exp(iS̃)

∣∣∣∣ , (2.38)

where qm(x3) = maxyq(x3, y), x3 and S̃(x3) are calculated at x∗ = 
X; the coupling
coefficient C0 is given by (2.36).

2.6.1. Two-dimensional actuator

For a two-dimensional actuator with frequency F = 3 × 10−5 the acoustic wave
in the leading-edge vicinity had the phase speed c ≈ 0.64 corresponded to the
slow wave of θy ≈ −62◦, θz = 0. The boundary-layer disturbance was measured at
station 
X = 10 mm where R =

√
U ∗

∞
X/ν∗
∞ = 360.5 and x3 = 2 × 10−3. For such a

small value of x3, the exponential term in (2.38) is approximated as |exp(iS̃(x3))| =1.
Calculations of the receptivity coefficient for Mode F show that its value is an order
of magnitude smaller than that for Mode S. Moreover, the phase measurements in the
boundary layer on the test plate gives the phase speed c ≈ 0.85, which is very close to
the theoretical value c = 0.849 for Mode S. This allows us to ignore the contribution of
Mode F into the boundary-layer disturbance. Figure 9 shows the receptivity coefficient
K calculated for Mode S as a function of θy . The experimental value is shown by the
symbol with the error bar indicating uncertainty of measurements. The theoretical
prediction is remarkably close to the experimental point.

2.6.2. Three-dimensional actuator

The phase measurements showed that the phase speed of acoustic waves generated
by a three-dimensional actuator was constant with accuracy of 10% for all sweep
angles θz. The disturbance with frequency F = 3 × 10−5 had phase speed c ≈ 1.83
corresponding to fast acoustic waves. The receptivity coefficients were measured at
station 
X = 20.1mm (R = 511 and x3 = 4 × 10−3).
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Figure 11. Mass-flux distributions for Modes S and F at 
X = 20.1mm, F = 3 × 10−5.

Figure 10 shows that the phase speed calculated for Mode S is close to the
experimental value c ≈ 0.83, i.e. Mode S is expected to make the dominant contribution
to the boundary-layer disturbance. At first glance, this contradicts the conclusion of
§ 2.5 that fast acoustic waves predominantly generate Mode F. To clarify this issue
we performed receptivity calculations for both Mode S and Mode F in the range
0 � θz � 60◦. It turned out that the coupling coefficient C0(Mode S, fast waves) is
of the order of C0(Mode F, fast waves) due to relatively high angles of incidence,
θy ≈ −70◦. This is consistent with the data shown in figures 7 and 8. In addition, the
mass-flow maximum qm(Mode S) is significantly larger than qm(Mode F) as shown
in figure 11. This leads to the ratio K(Mode S)/K(Mode F) > 3 for 0◦ � θz � 60◦, i.e.
the excitation of Mode S by fast acoustic waves is, indeed, dominant in the case
considered. This allows us to assume that the experimental receptivity coefficients are
predominantly related to Mode S.

Figure 12 shows K(Mode S) as a function of θy for two-dimensional waves (θz = 0).
The experimental point (symbol) is again very close to the theoretical curve. In
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Figure 13. Receptivity coefficients for Mode S vs. sweep angle, F = 3 × 10−5; c = 0.64
for two-dimensional source; c = 1.83 for three-dimensional source.

figure 13, the theoretical predictions and the experimental data are shown for various
sweep angles θz. The data for to the two-dimensional source are also presented
for comparison. Notwithstanding the difficult conditions for theoretical modelling
(high angles of incidence and relatively large value of the small parameter ε ≈
0.3) as well as large uncertainty in the experimental data (about 20% for K),
good agreement is observed in the range 0 � θz < 50◦. For higher sweep angles, the
theoretical and experimental curves diverge significantly. This discrepancy may be
due to the uncertainty in the experimental data, which strongly increases with θz.
Another reason is associated with the fact that the theoretical model needs to be
revised for large θz. As the sweep angle approaches its limiting value cos−1(1/M), the
wavenumber α1 given by (2.4) tends to infinity, whereas the phase speed c1 = 1/α1 → 0
and the critical point yc → 0. Ultimately the critical layer merges with the Stokes
layer, which leads to a new asymptotic structure in the near-field boundary layer at
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x2 = O(1). This appears to be the triple-deck structure, which is extensively used for
theoretical modeling of TS waves (Smith 1989; Kozlov & Ryzhov 1990).

Maslov et al. (2001) also reported receptivity data for acoustic wave components
with negative phase speeds: c ≈ −0.75 and c ≈ −1.48. In these cases, the leading
edge of the test plate is very close to the conical envelope of acoustic wave fronts
radiated from a three-dimensional source. In the vicinity of this envelope, which
can be treated as an unsteady three-dimensional shocklet, the acoustic field is highly
non-uniform and its amplitude is significantly larger than that observed within the
acoustic cone. The receptivity problem for this configuration appears to be associated
with interaction of unsteady shocklets with the plate leading edge, which is beyond
the scope of this paper.

3. Inter-modal exchange
3.1. Problem formulation

The DNS of Ma & Zhong (2001) showed that two-dimensional fast acoustic waves
of zero angle of incidence (θy = 0, θz = 0) were able to generate Mode S in the
boundary layer on a flat plate with a sharp leading edge. The numerical simulation
was performed for case 1 of table 1. The asymptotic model of § 2 fails to predict this
result because the coupling coefficient is zero in the dominant-order approximation
(see figure 7b). To address this case one needs to identify additional mechanisms
transferring energy to Mode S somewhere downstream from the leading edge.

Such a mechanism may be associated with the inter-modal exchange discussed by
Fedorov & Khokhlov (1993, 2001). With this assumption Mode F is generated by
the fast acoustic wave near the leading edge. Then, Mode F excites Mode S due to
non-parallel effects. Since the phase speeds of Modes S and F are close to each other
(see Region 3 in figure 1), even a weak non-uniformity of the mean flow may lead to
significant interactions between the modes.

The inter-modal exchange can be modelled using the multiple-mode method
developed by Zhigulev, Sidorenko & Tumin (1980) for incompressible boundary
layers and extended by Tumin & Fedorov (1983) to compressible flows. This method
was also described by Zhigulev & Tumin (1987) and Fedorov & Khokhlov (2001,
2002). Next, we briefly outline its basic elements.

The disturbance vector (2.14) is expressed as the eigenfunction decomposition

Z =
∑

α

Cα(x3)ζ α(x3, y) exp[iS̃α(x3)], S̃α(x3) = ε−4

∫ x3

x30

α̃ dx3 + βz − t, (3.1)

where
∑

α denotes summation over the discrete spectrum and integration over
continuous spectra. The amplitude coefficients Cα(x3) are solutions of the ordinary
differential equations

dCα

dx3

=
∑

γ

Cγ (x3)Wαγ (x3) exp[i(S̃γ − S̃α)], (3.2)

Wαγ = −

〈
B

∂ζ γ

∂x
, ξα

〉
+ 〈H1ζ γ , ξα〉

〈Bζ α, ξα〉 . (3.3)

Equations, (3.2)–(3.3) appear to be an extension of (2.19) to the multi-modes case. The
diagonal elements Wαα describe non-parallel effects on the evolution of a single mode.
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The non-diagonal elements Wαγ represent an interaction between different modes.
If one of these modes belongs to the continuous spectrum, then Wαγ couples the
external disturbances with the boundary-layer modes (receptivity problem). If both
modes belong to the discrete spectrum, the matrix elements represent the inter-modal
exchange. If the mean flow is parallel, then all matrix elements Wαγ =0 and no
coupling occurs between modes.

3.2. Comparison with DNS

An exchange between Modes S and F is modelled using the two-mode approximation

Z = C1ζ 1(x3, y) exp(iS̃1) + C2ζ 2(x3, y) exp(iS̃2), (3.4)

where the subscripts 1 and 2 denote Modes S and F, respectively. The initial amplitudes
are specified using the leading-edge receptivity model of § 2 as

x3 → 0: C1 → C
(1)
0 x

1/4
3 exp(iS̃1), C2 → C

(2)
0 x

1/4
3 exp(iS̃2), (3.5)

where the coupling coefficients C
(1,2)
0 are calculated using (2.36).

The system of equations (3.2) with the initial conditions (3.5) was integrated
numerically using the fourth-order Runge–Kutta method. The integration domain
contains more than 2000 knots, which allows computations of the disturbance
amplitude with relative error less than 10−3.

Calculations were conducted for case 1 of table 1 corresponding to the DNS of
Ma & Zhong (2001). To be consistent with the DNS data, hereafter we use the
Reynolds number R ≡

√
U ∗

∞x∗/ν∗
∞ as a streamwise variable. Then the wavenumber

is expressed as α ≡ α∗√ν∗
∞x∗/U ∗

∞ = α̃RF . The fast acoustic wave has the frequency
F =2.2 × 10−4 and the angles θy = θz =0. For this set of parameters, the leading-edge

receptivity model gives C
(1)
0 = 0 and C

(2)
0 �= 0, i.e. the fast wave generates Mode F

only.
In figure 14(a, b) the eigenvalues of Modes S and F are shown as functions of R.

While the real parts Re[α1,2(R)] are very close to each other at R ≈ 900, the imaginary
parts Im[α1,2(R = 900)] are different. The synchronization point Rs , resulting from the
condition α1 =α2, is essentially complex and so may lead to distributed rather than
local inter-modal exchange. This conjecture is confirmed by the data presented in
figures 15–17.

Figures 15(a) and 15(b) show distributions of the wall pressure amplitude for
Modes S and F respectively. Different curves represent solutions for different initial
points R0 =

√
U ∗

∞x∗
0/ν

∗
∞. The amplitude of Mode F weakly depends on R0, i.e. the

initial condition is captured well by the asymptotic relation (3.5). On the other hand,
the amplitude of Mode S mainly depends on the initial point. This effect is illustrated
in figure 16, where the wall pressure amplitude at the upper neutral branch, R = 988,
is plotted as a function of R0. The solid line shows the amplitude of the unstable
Mode S and symbols show the amplitude of Mode S plus Mode F. The slope of
this distribution can be treated as the strength of the inter-modal exchange. The
solution of (3.2)–(3.5) is dominated by the initial boundary rather than by the phase
synchronization in the vicinity of R = 900 (see figure 14).

The disturbance amplitude approaches the DNS prediction of Ma & Zhong
(2001) as the initial point decreases. This allows us to conclude that the two-
mode approximation captures qualitative features of the receptivity process. However,
quantitative agreement is poor because the disturbance frequency is relatively high
and the asymptotic regions are not distinguished.
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Figure 14. Eigenvalues α ≡ α̃RF of Modes S, F and wavenumbers of the fast and slow
acoustic waves for case 1: M = 4.5, two-dimensional disturbances of F = 2.2 × 10−4.

3.3. Inter-modal exchange against leading-edge receptivity

Figure 17 shows the wall pressure distributions pw(R) = |p1 + p2| of Mode S plus
Mode F excited by the slow and fast acoustic waves. The leading-edge receptivity to
the slow acoustic wave (dashed line) is significantly stronger than that resulting from
the distributed inter-modal exchange (solid line). This case illustrates the disturbance
dynamics of weakly unstable Mode S with the instability region not very far from
the leading edge.

More practical situations involve disturbances of lower frequencies, when the
amplification ratio is ∼103 − 104. In these cases, it is difficult to perform DNS
and wind-tunnel experiments because of the high Reynolds numbers. On the other
hand, the combined numerical and asymptotic approach works better and provides
higher accuracy at larger R and smaller F . As an example, we consider disturbances of
frequency F = 5 × 10−5 with the other parameters being the same as in the case shown
in figures 14–17. The eigenvalues of Modes S and F are shown in figure 18. Mode S
is weakly unstable in the region 590< R < 2450 associated with two-dimensional
disturbances of the first mode. Then, Mode S becomes highly unstable in the region
3640< R < 4580 related to instability of the second mode. Mode F is almost neutral
in the upstream region R < 3000 and highly stable in the region of the second-mode
instability.
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Figure 16. The wall pressure amplitude at the upper neutral branch as a function of the
initial point R0 and the DNS prediction of Ma & Zhong (2001); case 1, two-dimensional
disturbances of F = 2.2 × 10−4.

Figure 19a (19b) shows the wall pressure amplitude pw = |p1 + p2| of Mode S plus
Mode F for excitation by the fast (slow) acoustic wave with angles θy = θz = 0. Arrows
indicate the initial point R0. The solution is sensitive to R0 in the case of excitation by
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Figure 18. Eigenvalues α ≡ α̃RF of Modes S, F and wavenumbers of the fast and slow
acoustic waves for case 1; two-dimensional disturbances of F = 5 × 10−5.

the fast acoustic wave, when the unstable Mode S is predominantly generated via the
distributed interaction with Mode F. On the other hand, the disturbance amplitude
relevant to excitation by the slow acoustic wave weakly depends on the initial point,
indicating that the leading-edge receptivity is stronger than the inter-modal exchange.
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Figure 19. The wall pressure disturbance of Mode S plus Mode F excited by (a) fast and
(b) slow acoustic waves; case 1, two-dimensional disturbances of F = 5 × 10−5.

103

104

102

101

100

10–0

Excitation by fast wave
Excitation by slow wave

0 1000 2000 3000 4000 5000
R

p
w

Figure 20. The wall pressure disturbance of Mode S plus Mode F excited by fast and slow
acoustic waves; case 1, two-dimensional disturbances of F = 5 × 10−5.

As shown in figure 20, the direct excitation of Mode S by the slow acoustic wave
(dashed line) yields an amplitude maximum approximately 50 times larger than that
resulting from the inter-modal exchange (solid line).

The examples shown in figures 17 and 20 indicate that the leading-edge receptivity
is stronger than the inter-modal exchange for a boundary layer on an adiabatic
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Figure 21. Eigenvalues α ≡ α̃RF of Modes S, F and wavenumbers of the fast and slow acou-
stic waves for M = 5.5, T0 = 567.7 K, Tw = 1.5; two-dimensional disturbances of F = 6 × 10−5.

wall. However, this balance may be different in the case of cooled walls. Fedorov &
Khokhlov (1993, 2001) showed that the synchronization point Rs may be very close
to the real axis at sufficiently small wall temperatures Tw . This may intensify the local
interaction of Modes S and F in the vicinity of the synchronization point and change
the relation between the leading-edge receptivity and the inter-modal exchange. Such
a situation is exemplified by the disturbance spectrum shown in figure 21 for the
case of M = 5.5, Tw = 1.5 (Tw/Tad ≈ 0.25), T0 = 567.7 K and F =6 × 10−5, with the
synchronization point Rs ≈ 2960 being close to the neutral point R = 3000 of Mode
S. Distributions of the wall pressure amplitude pw = |p1 + p2| calculated at various
initial points R0 are plotted in figure 22a (22b) for excitation by the slow (fast)
acoustic wave; arrows indicate the initial points.

As shown in figure 22(a), the slow acoustic wave generates Mode S of amplitude
∼1 near the leading edge. This mode attenuates downstream and reaches the neutral
point with the relatively small amplitude ∼10−2. Its further amplification leads to a
maximum amplitude of the order of 103 at the upper neutral branch R = 3950. In
this case, the inter-modal exchange plays a minor role in the receptivity process.

For excitation by the fast acoustic wave (figure 22b), the disturbance behaviour
is quite different. Mode F is generated near the leading edge and reaches the
synchronization region with the amplitude ∼1. Then, Mode F generates the unstable
Mode S of amplitude ∼1 via the inter-modal exchange in the vicinity of the
synchronization point Rs . Further downstream, Mode S exponentially grows to
amplitude ∼105 at R = 3950. The role of inter-modal exchange is clearly shown
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Figure 22. The wall pressure disturbance of Mode S plus Mode F excited by (a) slow and
(b) fast acoustic waves for M = 5.5, T0 = 567.7 K, Tw = 1.5; two-dimensional disturbances of
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Figure 23. The wall pressure amplitude at the upper neutral branch as a function of the initial
point R0 for M = 5.5, T0 = 567.7 K, Tw = 1.5; two-dimensional disturbances of F = 6 × 10−5.

in figure 23, where the maximum amplitude pw(R = 3950) is plotted as a function of
the initial point R0. The solution is weakly sensitive to the initial point until the latter
is far upstream of the synchronization point Rs . As R0 crosses Rs , the disturbance
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amplitude sharply decreases. Comparing the disturbance amplitude given by solid
lines in figure 22(a, b) we conclude that excitation of Mode S by the fast acoustic
wave via the local inter-modal exchange is stronger than that by the slow acoustic
wave via the leading-edge receptivity.

4. Concluding remarks
The receptivity of a high-speed boundary layer on a flat plate to acoustic

disturbances has been modelled using a combination of asymptotic and numerical
methods. It was shown that acoustic waves are synchronized with the first and
second boundary-layer modes in the vicinity of the leading edge. This property of
the disturbance spectrum leads to a new asymptotic structure of the disturbance field
and causes significant changes in the coupling coefficient compared with the subsonic
boundary layer.

The leading-edge receptivity is associated with scattering and diffraction of acoustic
disturbances. Interplay of these effects depends mainly on the angle of incidence θy:

(i) For θy =0 (the acoustic wave front is normal to the plate surface), a dominant
mechanism is diffraction of the incident acoustic wave due to the boundary-layer
growth. This leads to a partial translation of acoustic disturbances to the boundary-
layer modes, namely, Modes S and F.

(ii) For θy < 0 (acoustic wave incident on the leading edge from below the
measurement side), scattering of the incident wave leads to a cylindrical source
concentrated at the leading edge. This source induces the secondary acoustic field,
which is synchronized with the boundary-layer modes and effectively generates the
latter via the diffraction mechanism similarly to case i).

(iii) For θy > 0 (acoustic wave incident on the leading edge from above the
measurement side), both scattering and diffraction are involved in the receptivity
process.

The leading-edge receptivity theory agrees well with the experimental data of
Maslov et al. (2001) obtained in a Mach 6 wind tunnel on a flat plate with a sharp
leading edge. The theoretical receptivity coefficient for two-dimensional acoustic waves
is remarkably close to the experimental data point. Good agreement is also observed
for three-dimensional acoustic waves in the sweep angle range 0 � θz < 50◦. For larger
θz, the theoretical and experimental curves diverge since the disturbance field changes
its asymptotic structure, which seems to become the triple-deck structure associated
with oblique TS waves (Smith 1989) rather than the second-mode instability.

The unstable boundary-layer mode can also be excited downstream from the
leading edge via the inter-modal exchange due to non-parallel effects. This mecha-
nism has been modelled using the multiple-modes method, namely its two-mode
approximation. A combination of the leading-edge receptivity theory with the two-
mode approximation captures qualitative features of the direct numerical simulation of
Ma & Zhong (2001). However, quantitative agreement is poor because the disturbance
frequency is relatively high and the asymptotic regions are not distinguished.

It has been shown that the distributed inter-modal exchange is significantly weaker
than the local leading-edge receptivity for the boundary layer on an adiabatic wall.
However, the inter-modal exchange becomes dominant in the case of pure synchroni-
zation between the boundary-layer modes. This situation occurs in high-speed
boundary layers on cooled walls, when the discrete spectrum has its synchronization
point close to the real parameter space. The relationship between the leading-edge
receptivity and the inter-modal exchange strongly depends on the location of the
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synchronization point, which, in turn, is a function of mean-flow parameters and
disturbance frequency. Both mechanisms should be taken into account for accurate
prediction of the disturbance amplitude.

The present study shows that a combination of asymptotic and numerical methods
provides a robust tool for receptivity modelling. This approach helps to identify basic
mechanisms of the receptivity process and enables a comparative analysis. It may
also guide further DNS and experimental studies of boundary-layer receptivity at
supersonic and hypersonic speeds.

The author acknowledges Professor Anatoly Maslov and Dr Alexander Shiplyuk
who kindly provided details on the leading-edge receptivity experiment. Parts of this
work were supported by European Office of Aerospace Research and Development,
Project SPC-98-4071, and INTAS, Grant 2000-0007.
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